

University of Cincinnati Office of Innovation 1819 Innovation Hub 2900 Reading Rd. Suite 460 Cincinnati, Ohio 45206

www.innovation.uc.edu

Syringe based rapid processor for small biopsies

TECHNICAL FIELD Diagnostics

APPLICATION Morphologic diagnosis, immunohistochemistry

DESCRIPTION

There is a significant unmet need in the field of pathology for rapid processing of small biopsies which allows clinicians to make a preliminary diagnosis prior to patient discharge. The current methodology to process "immediate reads" involves running a standard tissue processor coupled with traditional embedding technique, which are both slow and wasteful due to limited ability to scale down solvent usage. Turn-around times for "rapid processing" using current techniques typically range from 4-7 hrs, often preventing physicians from making same day diagnosis without destroying precious tissue. This often results in delayed diagnosis, additional use of both patient & healthcare resources, and potentially poorer patient outcomes.

Dr. Paul Lee has developed a novel tissue fixation and embedding system that combines the tissue fixation and embedding process creating a rapid processing block for biological specimens. The invention dramatically shortens processing and embedding time to approximately 2 hrs while preserving the antigenicity and morphology of the specimen and thus allows for rapid reads of small biopsies in a timeframe that was not previously achievable. The technology involves a syringe-based device with a novel solvent management system that allows for rapid-processing with much less solvent waste. Importantly, the formalin-fixed paraffin blocks produced by this system are high quality and non-inferior to traditional methods.

For discussions around learning more or licensing this technology please contact Tais Doll today.

ADVANTAGES

- Rapid, convenient processing
- Disposable specimen cuvette (no cross contamination)
- Antigenicity preservation
- Less solvent usage (associated with less cost for solvent disposal)
- Can be easily incorporated into existing infrastructure
- Very small footprint

INTELLECTUAL PROPERTY

• PCT/US19/68559

INVENTOR

Paul Lee, MD, PhD Pathology & Laboratory Medicine College of Medicine University of Cincinnati

Tais Doll, PhD Licensing Associate <u>tais.doll@uc.edu</u> 513-556-4546

